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A B S T R A C T   

Deforestation is currently a widespread phenomenon and a growing environmental concern in the era of rapid 
climate change. In temperate regions, it is challenging to quantify the impacts of deforestation on the catchment 
dynamics and downstream aquatic ecosystems such as reservoirs and disentangle these from direct climate 
change impacts, let alone project future changes to inform management. Here, we tackled this issue by inves
tigating a unique catchment-reservoir system with two reservoirs in distinct trophic states (meso‑ and eutrophic), 
both of which drain into the largest drinking water reservoir in Germany. Due to the prolonged droughts in 
2015–2018, the catchment of the mesotrophic reservoir lost an unprecedented area of forest (exponential in
crease since 2015 and ca. 17.1% loss in 2020 alone). We coupled catchment nutrient exports (HYPE) and 
reservoir ecosystem dynamics (GOTM-WET) models using a process-based modeling approach. The coupled 
model was validated with datasets spanning periods of rapid deforestation, which makes our future projections 
highly robust. Results show that in a short-term time scale (by 2035), increasing nutrient flux from the catchment 
due to vast deforestation (80% loss) can turn the mesotrophic reservoir into a eutrophic state as its counterpart. 
Our results emphasize the more prominent impacts of deforestation than the direct impact of climate warming in 
impairment of water quality and ecological services to downstream aquatic ecosystems. Therefore, we propose to 
evaluate the impact of climate change on temperate reservoirs by incorporating a time scale-dependent context, 
highlighting the indirect impact of deforestation in the short-term scale. In the long-term scale (e.g. to 2100), a 
guiding hypothesis for future research may be that indirect effects (e.g., as mediated by catchment dynamics) are 
as important as the direct effects of climate warming on aquatic ecosystems.   

1. Introduction 

Global deforestation is proceeding at unprecedented rates, driven by 
increasing events of wildfires, droughts, heatwaves, pests and pathogens 
(Mottl et al., 2021; Overpeck and Breshears, 2021). Forest has been 
well-acknowledged as high priority habitats as they store high biodi
versity and provide key ecosystem services (Mori et al., 2017). Among 
them, the positive feedbacks between forests and the water cycle are 
multifaceted and not only refer to water quantity dynamics but also to 
water quality, e.g., by buffering of nutrients, reducing erosion, or 

enhancing in-stream removal processing of nutrients, thereby serving as 
a major management target for catchment-centered water quality 
restoration (Sweeney et al., 2004). In contrast, deforestation leads to loss 
of key ecosystem functions and induces legacy effects on the catchment 
hydrosphere by changing runoff patterns or intensifying nutrient 
loading from these catchments (Woodward et al., 2014). Thus far, 
large-scale deforestation has been recognized as a key driver for the 
changes in the biogeochemical cycling at local and global scales (Law
rence and Vandecar, 2015). 

Deforestation in temperate regions, particularly in central European 
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uplands, has been relatively understudied compared to tropical areas. In 
many tropical, densely forested areas (e.g., the Amazon), deforestation 
effects are predominantly addressed regarding catchment exports of 
particulate substances (Bormann et al., 1974), nutrient cycling (Down
ing et al., 1999), and system resilience (Zemp et al., 2017). However, 
despite the ongoing widespread deforestation in central Europe, only a 
few studies in Poland (Boczoń et al., 2018), the Czech Republic 
(Schmidt et al., 2021) and Germany (Jung et al., 2021) were recently 
performed, which all pointed to a change in dissolved mass export from 
the catchment, but with contradictory trends, varying magnitudes and 
temporal patterns. Our predictive ability to assess the impact of defor
estation in temperate region therefore remains limited. Climate change 
and increasing deforestation (Overpeck and Breshears, 2021), as well as 
the significant difference in hydrogeological processes between 
temperate and tropical systems (Domis et al., 2013), jointly call for more 
in-depth explorations of the deforestation effects on catchment dy
namics in the central European temperate regions. 

Furthermore, the consequences of deforestation for the downstream 
waterbodies such as reservoirs have been rarely addressed in central 
Europe. Reservoirs are highly valuable artificial infrastructures 
providing various ecological services to human, including drinking 
water resources, nutrient removal to downstream, and flood protection 
(Rinke et al., 2013). In particular, small reservoirs constitute most 
existing reservoirs and are disproportionately important for biogeo
chemical processes (Harrison et al., 2009). They usually have a rela
tively short water residence time and are highly sensitive to both climate 
change and anthropogenic perturbations (Adrian et al., 2009). Never
theless, except for a few cases that focused on specific water chemistry 
proxies (Kopáček et al., 2017, 2019), the impact of deforestation on the 
ecosystem dynamics in downstream reservoirs has been largely over
looked despite its vast management concern. 

It is challenging to attribute the direct and indirect impacts on 
reservoir ecology to external forces. Direct effects from climate change 
on water bodies have been well-acknowledged (Woolway et al., 2020), 
whereas joint effects from indirect effects in the catchment via land-use 
change, including deforestation, remain largely unquantified. Disen
tangling the effects is valuable because only a comprehensive integra
tion of direct and indirect impacts can thoroughly inform management, 
e.g., by prioritizing alternative mitigation measures either targeting 
catchment or reservoir focused management response. A feasible 
method to address this challenge is to use process-based models driven 
by different external forcing scenarios to project ecosystem dynamics in 
the future. It is pivotal to bring the following five environmental com
partments into one coherent chain of processing: climatic physical 
drivers, catchment hydrology, biogeochemical processing in the catch
ment, lake physics and aquatic ecology. However, such efforts are rare 
and existing approaches usually simplified either the catchment or the 
lake/reservoir compartments depending on their research emphases 
(Barbosa et al., 2021; Couture et al., 2014; Nielsen et al., 2021), thereby 
missing key mechanisms related to deforestation and its impact on 
lake/reservoir ecosystem dynamics. From the perspective of environ
mental modeling, integrating the five modeling modules is challenging 
yet highly valuable. 

In addition, future projections of lakes responding to climate change 
have focused predominantly on physical properties (such as temperature 
and stratification; e.g., Woolway et al. (2020)), and less frequently on 
water quality or ecology (Jane et al., 2021; Kraemer et al., 2021). In 
addition, these projections fundamentally cannot be validated. Refer
ence systems are therefore extremely valuable for the validation of these 
projections. However, such opportunities are rare because most systems 
are substantially different in morphology, water chemistry and ecolog
ical features, which hampers direct comparison. Availability of moni
toring data is another key determinant for such a comparative approach. 
Grab sampling is usually limited to offering a comprehensive under
standing of a complex interacting catchment-reservoir system. Instead, 
high-frequency monitoring approach representing the catchment and 

reservoir heterogeneities are recommended (Rode et al., 2016). 
In this study, we utilize a unique catchment-reservoir system in 

central Germany with two predams with similar morphological features 
but distinct trophic states (meso‑ and eutrophic). The difference in 
trophic status is mainly driven by land use in the catchments with either 
forest- or agriculture dominance. These two systems have been inten
sively monitored at both catchment outlets and reservoirs since 2011, 
allowing for adequate modeling exploration. The hypotheses are: 1) 
large-scale deforestation in temperate catchments of central European 
uplands can lead to increased nutrient fluxes to the downstream via an 
increase in both discharge and concentration; 2) jointly with climate 
warming, the changes in catchment nutrient exports can subsequently 
turn the downstream lake/reservoir from meso‑ into eutrophic state and 
deteriorating the water quality. To address these hypotheses, we 
established a coupled catchment (HYPE) and reservoir (GOTM-WET) 
model, which was used to project reservoir water quality by 2035 under 
various climate change and deforestation scenarios. We elaborated to 
disentangle the relative importance of climate change and deforestation, 
and provide new insights for combating future climate change effects 
and safeguarding the water resources. 

2. Materials and methods 

2.1. Study sites 

The Rappbode and Hassel predams are located in the eastern Harz 
Mountains in central Germany (Fig. 1 and Table 1). The two predams 
drain directly into the main Rappbode Reservoir (two-thirds of total 
inflow), which is the largest drinking water reservoir in Germany for 
about one million residents and providing additional services such as 
flood protection and electricity production (Rinke et al., 2013). The two 
predams were built to reduce sediment and nutrient load to the main 
reservoir. They are operated in continuous overflow on the spillway 
while the bottom outlets are normally closed. They share similar 
morphological properties and catchment size (Friese et al., 2014). 
However, whereas the Rappbode catchment is predominantly forest 
without agricultural use, the Hassel catchment consists of roughly equal 
areas of forest, grassland and agriculture. This could explain the distinct 
trophic states in Rappbode (mesotrophic) and Hassel (eutrophic) pre
dams (Table 1). In addition, the Rappbode catchment underwent 
deforestation of ca. 17.1% from 2015 to 2020 (Figs. 1 and S1). Since 
1999, all wastewater from the settlements in the two catchments are 
collected and treated outside the catchment. Sampling stations were 
deployed at the inflow (YRZ for Rappbode, YHZ-Q and YHZ-WQ for 
Hassel), the deepest points in the reservoir (YR3 and YH3 for Rappbode 
and Hassel, respectively), and the reservoir outflow closest to the dam 
(YR1 and YH1 for Rappbode and Hassel, respectively)(Fig. 1). All 
monitoring activities are part of the TERENO lowland observatory net
works across Germany (www.tereno.net). 

2.2. Data collection for modeling 

Meteorological data to drive the catchment and lake model were 
collected from the German meteorology service (DWD) via the package 
‘rdwd’ (Boessenkool, 2019) in R (R Core Team, 2021), at three climate 
stations and seven precipitation gage stations from Jan. 1st, 2010 to Dec. 
31st, 2019 (Figs. S2 and S3). Collected variables included air tempera
ture (◦C), air pressure (hPa), relative humidity (%), mean wind speed (m 
s− 1) and precipitation (mm) at hourly interval, and shortwave radiation 
(J cm− 2) for every 10 min (aggregated to hourly). 

Daily discharge at the gage stations of both inflows (YRZ and YHZ-Q) 
from 2010 to 2019 were provided by the local environmental authority 
“Landesbetrieb für Hochwasserschutz und Wasserwirtschaft (LHW)”. 
The gage station for the Hassel catchment (YHZ-Q) is located 2 km up
stream of the inlet so that ~35% of the catchment is not covered, which 
is corrected by the catchment modeling (see below). High frequency (10 
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min interval) continuous measurements on concentrations of NO3–N in 
both inflows were performed by optical probe (ProPS, TRIOS, Germany) 
measuring light extinction in the UV spectrum (190–360 nm). Grubbs’ 

test (Grubbs, 1950) was used to eliminate outliers for pre-processing. 
The data were aggregated to a daily basis to facilitate the comparison 
with HYPE outcomes. In addition, water samples from the streams (YRZ 
and YHZ-WQ) were collected on a biweekly interval for wet chemical 
analysis in the laboratory, including total nitrogen (TN), Nitrate-N 
(NO3–N), Ammonium (NH4–N), particulate nitrogen (PN), total 
phosphorus (TP), dissolved phosphorus (DP), soluble reactive phos
phorus (SRP), silicon (Si), and particulate organic carbon (POC). Par
ticulate phosphorus (PP) was calculated as the difference between TP 
and DP. From 2011 to 2015, vertical profiles of temperature, dissolved 
oxygen, and chlorophyll-a fluorescence were measured with a multi- 
parameter probe (CTD90, Sea and Sun Technology GmbH, Germany), 
while the phytoplankton composition in terms of specific chlorophyll- 
fluorescence from diatoms, green algae, cryptophytes, and cyano
phytes (Beutler et al., 2002) was determined with another multi-channel 
fluorescence probe (Fluoroprobe, bbe moldaenke GmbH, Germany) at 
the deepest point in the two predams (YR3 and YH3; Fig. 1). Water 
samples were collected at six depths (2, 5, 8, 10, 12, 15 m (Rapp
bode)/13 m (Hassel)) for wet chemical analysis in the laboratory on the 
same chemical variables as those in the streams. In addition, surface 
water samples (0.5 m) were collected in front of the dam (YR1 and YH1; 
Fig. 1) on a biweekly interval from 2011 to 2019 for chemical analysis as 
explained above. Volume-weighted concentrations were calculated for 
the whole water column during mixing, and separately for the epilim
nion and hypolimnion during the stratified period (Fig. S4). The lab 
methods and data handlings were described by Friese et al. (2014) in 
more detail. 

2.3. Model description and set up 

2.3.1. Catchment model 
The HYdrological Predictions for the Environment (HYPE) model is a 

semi-distributed process-based hydrological and water quality model 

Fig. 1. (a) Land use distributions in the catchments of Rappbode (mesotrophic) and Hassel (eutrophic) predams in the Harz Mountain, central Germany. Locations of 
the seven water quality monitoring sites are provided, including catchment outlets (YRZ and YHZ-Q/WQ) and inside the predams (YR1 and YR3, YH1 and YH3). For 
Hassel catchment, gaging station (YHZ-Q) is 2 km upstream of the water quality station (YHZ-WQ). The areas of dead forest in the catchments are determined by 
remote sensing imagery from Sentinel-2 (2020). Land use surrounds the predams and the main reservoirs can be found in Friese et al. (2014). (b) Deforestation 
(provided as area of tree cover loss) in the whole Harz Mountain and the Rappbode catchment from 2001 to 2020, with noteworthy exponential tree cover loss since 
2015. Inner panels are remote sensing imageries from Sentinel-2 in both 2015 and 2020. 

Table 1 
Summary overview of the two predam reservoirs (Rappbode and Hassel) and 
their corresponding catchments (based on Rinke et al. (2013) and Friese et al. 
(2014)). TN, TP and Chl-a concentrations in the reservoirs are the 
column-weighted average values during the monitoring period (2011–2015) at 
sites YR3 and YH3 (Fig. 1a), and the TSI is calculated based on Carlson (1977) 
(TSI<30: oligotrophic; 30<TSI<50: mesotrophic; TSI>50: eutrophic; see SI text 
for more details).  

Characteristic Unit Rappbode Hassel 

Catchment    
Catchment area km2 42.9 40.5 
Average altitude m 533 504 
Annual discharge mm 374 249 
Annual precipitation mm 854 758 
Forest % 78 36 
Pastures % 15 29 
Arable land % 1 26 
Urban % 3 5 
Others % 3 4 

Reservoir    
Surface area km2 0.243 0.260 
Storage capacity Mm3 1.66 1.44 
Max. water depth m 16 14 
Mean water depth m 5.3 5.0 
Residence time day 51.7 65.2 
Total Nitrogen (TN) mg 

L− 1 
0.98 (±0.41) 2.97 (±1.36) 

Total Phosphorus (TP) mg 
L− 1 

0.025 (±0.006) 0.043 (±0.013) 

Chl-a μg L− 1 7.52 (±12.92) 13.51 (±24.43) 
Trophic state index 

(TSI) 
- 45.1 (±3.5) 

(Mesotrophic) 
57.3 (±2.9) 
(Eutrophic)  
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with the capability of simulating streamflow and nutrient export, and 
assessing the impact of land-use change on nutrient yields (Lindström 
et al., 2010). A more recent version (HYPE 4.3.0), which was used for 
this study, has been specifically adapted to forest processes (Pers et al., 
2016). The impact of different land use types on hydrological and 
nutrient cycling is reflected by model parameters, e.g. the potential 
evaporation (cevp) and denitrification (Denitr) are land use dependent 
(Table S1). The HYPE model simulated from 2010 to 2019 for discharge, 
NO3–N and TP concentration. The model was calibrated (2011–2014) 
and validated (2015–2019) separately, and simulation in 2010 was kept 
as the ‘spin-up’ period. For Hassel, discharge and NO3–N were cali
brated at the upstream gage station (YHZ-Q), and TP was calibrated at 
the downstream station (YHZ-WQ). Input data regarding general agri
culture practices, primary and sowings crops were taken from a previous 
study (Ghaffar et al., 2021). DiffeRential Evolution Adaptive Metropolis 
tool (DREAM) was applied for calibration and uncertainty analysis. Due 
to high computation demands, a two-year period (2013–2014) with 
large variations in discharge was selected as hydrologically critical 
years. Parameter and total uncertainty related to parameters variations 
and model structure were evaluated by 10,000 Markov Chain Monte 
Carlo simulations, and the 95% confidence interval band was considered 
as the uncertainty range (Ghaffar et al., 2021). A detailed explanation of 
the DREAM tool could be found in Vrugt et al. (2008). Sensitive pa
rameters for discharge, NO3–N and TP were identified before (Ghaffar 
et al., 2021) and the optimized values for this study were provided in 
Table S1. Performance of the HYPE model to simulate discharge, 
NO3–N and TP concentrations was evaluated by both Nash-Sutcliffe 
Efficiency (NSE and log-based NSE) and percentage bias (PBIAS) (Ull
rich and Volk, 2010) (see SI text). 

2.3.2. Reservoir ecosystem model 
The 1D General Ocean Turbulence Model (GOTM) and the lake 

ecosystem model Water Ecosystem Tool (WET) (Schnedler-Meyer et al., 
2022) was utilized to simulate the ecosystem dynamics in the reservoirs. 
GOTM-WET simulates the key ecosystem dynamics with a strong verti
cal heterogeneity, and can be linked to the HYPE model to evaluate the 
impact of catchments dynamics on the reservoirs. The ecological module 
is based on the PCLake model with a fully closed biogeochemical cycling 
(carbon, nitrogen, phosphorus) and a typical foodweb structure of 
temperate lake/reservoir ecosystems (Hu et al., 2016; Janse, 2005). 
GOTM-WET was calibrated and validated against a five-year monitoring 
dataset (2011–2015, in YR3 and YH3) preceded by a one-year spin-up 
period (2010). The model was additionally validated (second valida
tion) by another dataset at surface water from 2011 to 2019 (YR1 and 
YH1). Auto-calibration python-based program PARSAC for numerical 
model simulation (Bolding and Bruggeman, 2020) was applied to 
perform a global optimization of a subset of model parameters selected 
by sensitivity analysis (Andersen et al., 2021; Janse et al., 2010; Nielsen 
et al., 2014). This program applies the differential evolution method 
(Storn and Price, 1997), which searches for the optimal model param
eter set within parameter-specific predefined ranges for a maximum 
likelihood multi-objective function. Auto-calibration is implemented in 
a bottom-up approach, including seven steps with the parameters and 
state variables specifically selected in each step (Andersen et al., 2020). 
The auto-calibration ends when the model error could no longer be 
further reduced (see Table S2). Evaluation of the GOTM-WET model is 
based on the correlation coefficient (R), root mean square error (RMSE) 
and percentage of bias (PBIAS) (Bennett et al., 2013). Besides, trophic 
state index (TSI) was calculated based on GOTM-WET outputs as a 
synthetic ecosystem indicator for the reservoir (see SI text). 

2.4. Scenario design for future projections 

We design a scenario analysis to evaluate the impact of climate 
change and deforestation on catchment dynamics and ultimately on 
water quality and trophic states in the reservoirs by 2035. Hourly 

climate projections for all variables were taken from five Global Climate 
Models (GCMs) (HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, 
GFDL-ESM2M and NorESM1-M) provided by the Inter-Sectoral Impact 
Model Inter-comparison Project (ISI-MIP) (Warszawski et al., 2014). 
Scenarios include future climate change projections (2021–2035) of 
‘piControl’ (without anthropogenic climate change) and three Repre
sentative Concentration Pathway (RCPs 2.6, 6.0 and 8.5). The data were 
further interpolated by an external drift kriging method to a 5 km grid 
over the study area (Fig. S5). Quantile mapping was used for bias 
correction of RCP inputs (Déqué et al., 2007). In addition, three defor
estation scenarios (0, 50 and 80% deforestation) were applied to the 
Rappbode catchment. For both 50 and 80% deforestation, soil-land 
classes previously defined as spruce forest (coniferous trees) in the 
HYPE model were changed to natural grassland cover as a typical nat
ural process after deforestation. 

2.5. Statistical analysis 

All statistical analyses were performed in R Core Team (2021). The 
analyses were based on the annually-averaged simulated values during 
the projection period (2021–2035). Effects of climate change were 
assessed by comparing model outputs from each RCP scenario in the 
period 2021–2035 with a historical baseline period of 2011–2018, 
thereby as a factor with four levels (historical, RCPs 2.6, 6.0, and 8.5). 
For catchments, the historical baseline was determined by field data in 
the catchment outlets. For reservoirs, it was determined by simulated 
data of the reservoir model driven by catchment inputs and climate 
projection ‘piControl’. The effect of deforestation was assessed by 
comparing modelled variables in the future period with each defores
tation as a factor with three levels (0, 50 and 80% loss). Kruskal-Wallis 
(KW) test (R function ‘kruskal.test’) was used to test the differences 
among different projection scenarios. If significant differences were 
tested, pairwise Wilcoxon test (R function ‘pairwise.wilcox.test’) was 
utilized to distinguish the specific different groups. Besides, Wilcoxon 
test was used to test if the variable was different among the two reser
voirs (R function ‘wilcox.test’). For temporal trends in time series data, 
Mann-Kendall (MK) test was utilized (R function ‘MannKendall’ in 
package ‘Kendall’ (McLeod, 2005)). 

In addition, multilevel models were used to examine the relative 
importance (quantified by the percentage of variance explained) of 
climate change and deforestation and their interactions (as fixed effects) 
on the future projections of various hydro-ecological variables. Climate 
change and deforestation scenarios were nested, and different GCMs 
were provided as replicates. Time was considered as the random effect in 
the model. The model also estimated the contribution of residuals as the 
variance not explained by any factor. All variables were naturally log- 
transformed prior to the analysis to improve the normality. The multi
level models were developed using R packages ‘lme4’ and ‘variance
Partition’ (Bates et al., 2014; Hoffman and Schadt, 2016). 

3. Results 

3.1. Catchment model calibration and validation 

The HYPE model showed good performance for discharge at both 
stations during calibration and validation periods (Fig. 2 and Table S3). 
Seasonal dynamics were well captured including flow conditions, flood 
events and base flow. The highest NSE value (0.81) was observed at 
Rappbode during validation and lowest NSE value (0.74) was at Hassel 
catchment during calibration. PBIAS was below 20% for calibration and 
validation at both stations and was lower at Rappbode than Hassel. 

NO3–N loading was predicted reasonably well. For calibration, the 
model performed better in Rappbode than Hassel with NSE of 0.54 and 
0.36, respectively (logNSE provides similar outcomes). During the vali
dation period, the model also showed good performance with NSE of 
0.71 in Rappbode and 0.49 in Hassel. PBIAS values were below 10% for 
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calibration and ~20% for validation. NO3–N concentration shows a 
typical seasonal cycle with lower concentrations in late summer and 
high concentration in winter. These patterns were more pronounced in 
Hassel than in Rappbode and the model could remarkably reproduce 
these catchment-specific features. 

The model showed reasonable performance for TP loading, with NSE 
between 0.12 and 0.45 in both catchments during both calibration and 
validation periods. PBIAS values for both catchments were observed 
within the satisfactory range (-22% to 21%) except at Hassel during the 
calibration (40.2%), which was attributed to several simulated summer 
peaks against lower observed values. Several hydrological events were 
not captured by the model due to strong areal rainfall variation, which 
was likely not accurately measured by the limited number of precipi
tation stations. Consequently, logNSE values were better than the orig
inal NSE values. Nevertheless, the model satisfactorily captured the low 
flow seasonal TP concentration amplitudes with winter lows and sum
mer highs in both catchments, and the more pronounced seasonality of 
TP in Hassel than in Rappbode. 

The model evaluation for NO3–N and TP concentrations also reflects 
good performance in both catchments, with small differences between 
simulated and observed concentration and PBIAS ranged 
-18.31–17.03% for NO3–N and -7.34–17.25% for TP (Table S3). 
Nevertheless, we consider the loads more important than concentrations 

for the impact on the trophic state of the predams, and evaluation based 
on concentration using NSE and PBIAS can be inadequate when the 
observed values are low and the discrepancy is close to detection limit. 

The uncertainty analysis (Fig. S6) shows small parameter uncertainty 
bands of discharge NO3–N and TP, indicating the low uncertainty 
related to parameter optimization. In contrast, total uncertainty shows a 
much larger range, suggesting higher uncertainty caused by model 
structural uncertainties. Similar patterns were observed for NO3–N and 
TP at both catchments. More than 90% of the observed data for 
discharge, NO3–N and TP lies in the total uncertainty bands. Compared 
to NO3–N, higher uncertainties were observed for TP due to less 
observed data for calibration, which can be improved by increasing 
availability of high frequency data. Taken together, uncertainty associ
ated with HYPE model is acceptable and equifinality of parameteriza
tion is unlikely. 

3.2. Projections of catchment dynamics 

At annually-averaged scale, the model predicts that discharge in 
Rappbode catchment slightly increases by up to 10.2% (Fig. 3, Table 2) 
due to climate changes and deforestation (KW test, p < 0.01), and the 
change is significant at RCP6.0 or 8.5, and 50 or 80% deforestation 
(pairwise Wilcoxon test, p < 0.05). Multilevel models show that over 

Fig. 2. Performance of the catchment model (HYPE). Simulated and observed discharge (Q), NO3–N and total phosphorus (TP) concentrations in Rappbode and 
Hassel catchments are compared during calibration (2011–2014) and validation (2015–2019). Q and NO3–N concentration are measured at daily intervals, while TP 
concentrations are measured at biweekly interval in the laboratory. Note that discharge gage and water quality are measured in the same site in Rappbode catchment, 
but are separated at two stations in Hassel catchment, i.e., Hassel-Q and Hassel-WQ, respectively, (see Fig. 1 for more detail). 
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90% of variance in annually-average discharge is not explained by either 
climate change or deforestation (Fig. 3f). In addition, no temporal 
change is found in discharge under any scenario projection (MK test, p >
0.05; Fig. S7). 

For nutrient concentration in the Rappbode catchment, the model 
predicts that deforestation is the main driver of changes (KW test, p <

0.001) while climate has no significant direct effect (KW test, p > 0.05) 
(Fig. 3, Table 2). The increase of nutrient concentrations ranged 12% - 
114% under both 50 and 80% deforestation compared to the reference 
scenario with no deforestation (Table 2). At 80% deforestation, nutrient 
concentrations in Rappbode catchment increase but remained signifi
cantly lower than those in Hassel under 0% deforestation, and discharge 

Fig. 3. Projections of catchment dynamics by HYPE. (a-e) Projections for different water quality variables in both Rappbode and Hassel catchments at an annually- 
averaged scale. The projections include the scenarios of four climate projections (historical and RCPs 2.6, 6.0 and 8.5) and three deforestation rates (0, 50 and 80%). 
‘Historical’ scenario is the measured data from 2011 to 2018 before the deforestation in the catchment, and the other scenarios are from 2021 to 2035. For Hassel, 
only 0% deforestation is projected serving as a reference state. See Fig. S7 for the time series of these data at a daily scale. (f) Relative contributions of different factors 
in explaining the variance of various variables projected in the Rappbode catchment, determined by multilevel analysis on the model projections. Note that ‘in
teractions’ denote the interactions between deforestation and climate change. 

Table 2 
Statistical analyses of the model projections for catchment and reservoir ecosystem dynamics in the annually-average scale from 2021 to 2035. Kruskal-Wallis rank sum 
test shows if there are significant differences between the multiple groups of climate change and deforestation rates, and pairwise Wilcoxon test further distinguishes 
the difference between paired groups (only deforestation groups are provided). Relative changes show the percentage changes in the annually-average scale under 
deforestation of 50% and 80% compared to 0%. Note: * p < 0.05, ** p < 0.01, *** p < 0.001. a no value due to insignificant change (p > 0.05).  

Variables Kruskal-Wallis rank sum test Pairwise Wilcoxon test (p-value) under 
deforestation 

Relative changes under 
deforestation  

Climate change (historical, RCPs2.6, 
6.0, 8.5) 

Deforestation rates (0, 50, 
80%)      

Chi-square p-value Chi-square p-value 0% vs. 50% 0% vs. 80% 50% / 0% 80% / 0% 

Catchment         
Discharge 8.08 0.018* 13.89 0.001*** 0.021* 0.001*** 6.8% 10.2% 
NO3–N 3.31 0.191 432.80 0.000*** 0.000*** 0.000*** 73.3% 113.8% 
TP 0.75 0.686 343.40 0.000*** 0.000*** 0.000*** 29.9% 56.0% 
SRP 0.56 0.756 442.60 0.000*** 0.000*** 0.000*** 39.5% 74.5% 
PP 0.48 0.788 36.00 0.000*** 0.004** 0.000*** 11.5% 19.2% 

Reservoir         
Water Temp. 13.32 0.001** 0.08 0.96 0.96 0.96 -a -a 

TN 2.59 0.274 396.91 0.000*** 0.000*** 0.000*** 41.8% 65.4% 
TP 0.16 0.923 444.51 0.000*** 0.000*** 0.000*** 25.4% 40.8% 
NO3–N 3.48 0.175 390.65 0.000*** 0.000*** 0.000*** 78.9% 122.1% 
SRP 0.05 0.977 406.72 0.000*** 0.000*** 0.000*** 68.7% 85.4% 
PP 0.12 0.943 64.49 0.000*** 0.002** 0.000*** 14.7% 49.8% 
Chl-a 1.46 0.483 364.27 0.000*** 0.000*** 0.000*** 15.0% 30.7% 
Cyanobacteria 3.46 0.178 383.89 0.000*** 0.000*** 0.000*** 21.2% 36.2% 
Green algae 1.77 0.412 291.82 0.000*** 0.000*** 0.000*** 189.1% 228.0% 
Diatom 2.98 0.226 204.24 0.000*** 0.000*** 0.000*** 34.9% 80.0% 
TSI 0.78 0.678 424.70 0.000*** 0.000*** 0.000*** 5.6% 9.5%  
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will be significantly higher than that in Hassel (Wilcoxon test, p < 0.001; 
Fig. 3). Multilevel models further reveal that deforestation explained ca. 
63%, 50% and 64% of the variations in NO3–N, TP and SRP concen
trations (Fig. 3f). Similar to discharge, PP is not well explained by either 
factor (>95% variance explained by residuals). For NO3–N, there is a 
significant increasing trend only at RCP8.5 under different de
forestations (MK test, p < 0.01; Fig. S7). For TP and SRP, a significant 
increasing trend is detected under each RCP and deforestation scenario 
(MK test, p < 0.01). For PP, no temporal trend is found in any scenario. 

3.3. Reservoir model calibration and validation 

For both reservoirs, simulated water temperature showed high ac
curacy with RMSE below 1.0 ◦C, R higher than 0.98 and PBIAS below 4% 
in both calibration and validation, respectively, (Figs. 4 and S8, 
Tables S4 and S5), indicating that the model well captured the thermal 
dynamics on the vertical dimension. In addition, the highly variable DO 
dynamics in the epilimnion and the deep-water hypoxia were both 
successfully modeled, with R ~0.9 and PBIAS below 30% in Rappbode, 
and R ~0.8 and PBIAS below 20% in Hassel. 

The model succeeded in predicting the inter- and intra-annual vari
ations in NO3–N, with R of 0.55/0.68 and PBIAS of 15%/12% for 
calibration/validation, respectively, (Figs. 4, S9, S11 and S12). The 
model performed better during the second validation (2011–2019, only 
surface data), with R ~0.9 and PBIAS about 15% (Figs. S10 and S13, 
Tables S4 and S5). Summer depletion of NO3–N was nicely captured by 
the model. Simulated NH4–N also agreed reasonably with observations. 
The model underestimated the summer NH4–N peaks during calibra
tion. The model overall showed an acceptable performance for TN with 
R higher than 0.5. 

The model succeeded in grasping the magnitude and variations of TP 
with R ~0.3 and PBIAS ~30% for both calibration and validation 
despite its low level (0.01–0.03 mg L− 1). Several TP peaks in both res
ervoirs were not captured by the model. Besides, the model captured the 
magnitude of SRP, which was occasionally above the detection limit 
(0.003 mg L− 1) in Rappbode predam during autumn-winter and 
remained mostly undetectable in other seasons. In addition, silicon 
concentration was captured in terms of both seasonal variations and 
inter-annual magnitude in both reservoirs, with R ~0.26/0.39 and 
PBIAS around 20% in calibration and validation, respectively, and better 

Fig. 4. Performance of the reservoir ecosystem model (GOTM-WET) in the Rappbode predam. Observed and simulated data were compared for water temperature 
and water quality variables from 2011 to 2015 for both calibration (2011–2012) and validation (2013–2015) periods. Volume-weighted values across the water 
column were provided. Note that the three algal groups (cyanobacteria, green algae and diatom) are provided as Chl-a concentration. 
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during second validation (R > 0.8) in Rappbode. In Hassel, PBIAS of 
simulated silicon was all below 8%. 

The model predicted the magnitude and seasonality of Chl-a con
centration reasonably well in both calibration and validation periods in 
both reservoirs, with R in the range 0.28–0.64 and PBIAS about 4–30%. 
The general patterns of phytoplankton community composition were 
nicely modeled, with R for cyanobacteria, green algae and diatom in the 
range 0.20–0.78 and PBIAS ranged 2.3–47.5%. The results showed that 
during 2011 to 2015, diatom and cyanobacteria were the dominant 
groups, while cyanobacteria was more abundant in Hassel than Rapp
bode (Figs. 4 and S11). 

3.4. Projections of reservoir ecosystem dynamics 

For TN, NO3–N, TP, SRP and PP concentrations in Rappbode pre
dam, model shows that differences among the deforestation gradients 
are significant but not among the climate change gradients (KW test; 

Fig. 5, Table 2). In specific, compared to 0% deforestation, 50 and 80% 
deforestation lead to a significant increase of nutrient concentration 
(TN, NO3–N, TP, SRP and PP) ranged 14.7–122.1% (Table 2). At 80% 
deforestation, nutrient concentrations (except for PP) in Rappbode 
remain lower than those in Hassel at 0% deforestation (Wilcoxon test, p 
< 0.05). Nevertheless, TP and SRP concentrations both approach to the 
level in Hassel (Fig. 5). Multilevel model shows that deforestation ac
counts for 70–82% of variance in concentrations of TN, TP, NO3–N and 
SRP, and 12% in PP (Fig. 5). Despite 14.7–49.8% increase in PP con
centration at 50 and 80% deforestation, respectively, in-lake biogeo
chemical processes are more important than external inputs, resulting in 
the low explanatory of variance in PP. Climate change shows no direct 
contribution to the variations in nutrient concentrations. All nutrient 
concentrations (except for PP) show a significant increasing trend over 
the projection period (MK test, p < 0.05) (Fig. S14). 

The model projections suggest that, for Chl-a concentration, three 
algal biomass and TSI, differences among the deforestation gradients are 

Fig. 5. Projections of reservoir ecosystem dynamics by GOTM-WET. (a-k) Projections for different water quality variables and trophic state index (TSI) in both 
Rappbode and Hassel predams at annually-averaged scale. 30<TSI<50: mesotrophic; TSI>50: eutrophic. The projections include the scenarios of four climate 
projections (historical and RCPs 2.6, 6.0 and 8.5) and three deforestation rates (0, 50 and 80%). ‘Historical’ scenario is the simulated data in the reservoirs from 2011 
to 2018 before the deforestation, and the other scenarios are from 2021 to 2035. For Hassel, only 0% deforestation is projected serving as a reference state for 
eutrophic systems. See Fig. S14-S16 for the time series of these data at a daily scale. (l) Relative contributions of different factors in explaining the variance of various 
variables projected in the Rappbode predam, determined by multilevel analysis on the model projections. Note that ‘interactions’ denote the interactions between 
deforestation and climate change. 
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significant but not among the climate change gradients (KW test; Fig. 5, 
Table 2). In specific, at 50 and 80% deforestation, the model predicts an 
increase of Chl-a concentration and three algal biomass ranged 
15–228% (Table 2), where green algae and diatom contribute a relative 
low proportion (7%− 18%) of total algal biomass. Taken together, 50 
and 80% deforestation result in an increase of 5.6% and 9.5% in TSI, 
respectively, which ultimately exceed critical threshold of eutrophica
tion (>50), indicating the eutrophication in Rappbode predam due to 
deforestation. Chl-a and three algal groups in Rappbode at 80% defor
estation are still lower than those in Hassel (Wilcoxon test, p < 0.05), 
whereas they all approach to a similar level (Fig. 5). Furthermore, 
multilevel model shows that deforestation explains less variance in 
phytoplankton variables (40–63%) compared to that for nutrients 
(Fig. 5). From 2021 to 2035, Chl-a and cyanobacteria both show a sig
nificant increase trend under all projection scenarios (MK test, p < 0.05; 
Fig. S15). In contrast, green algae and diatom show an increasing trend 
under RCP2.6 but decreasing trend under RCP6.0 and RCP8.5 (MK test, 
p < 0.05; Fig. S15). Finally, water temperature is only affected by 
climate change but not by deforestation, and no significant change was 
detected in water temperature, thermocline depth and Schmidt stability 
from 2021 to 2035 (Fig. S16). Overall, the model projects a shift to 
eutrophication state in the mesotrophic Rappbode predam at 80% 
deforestation. Phytoplankton biomass appears to respond to deforesta
tion and climate change in a more diverse pattern than nutrients. 

4. Discussion 

4.1. Impact of deforestation on catchment dynamics 

Our results on the impact of deforestation on discharge are in line 
with a few available long-term field observations in temperate areas. In 
the Rappbode catchment, no significantly increased discharge was 
observed under 17.1% deforestation in 2020 (Fig. S17, SI text). The 
extreme drought in 2018 was associated with lower precipitation, while 
the runoff:precipitation ratio only fluctuated without clear trends 
(Fig. S18). Beudert et al. (2018) pointed out that deforestation rate must 
exceed a threshold of 20–25% of the total catchment area to be 
detectable in discharge (with precipitation higher than 500 mm y− 1). 
However, discharge was found unchanged over 30 years after a 40% 
deforestation in 2005 in the Bavarian forest (Jung et al., 2021). In 
addition, our model projections suggest a slightly increased discharge by 
6.8% and 10.2% under 50% and 80% deforestation, respectively (Fig. 3, 
Table 2). The low increase of discharge in response to deforestation can 
be explained by a mixture of competing factors of reduced evapotrans
piration from grassland fallow compared to conifer forest (Fig. S19), and 
increased evaporation of grassland due to loss of the shading by the 
canopy and an increased evapotranspiration for all vegetation types due 
to global warming, which may reduce the differences in evapotranspi
ration between the vegetation types. 

NO3–N concentration is predicted to increase by 78.9% under 50% 
deforestation (Table 2), while it was found doubled in Bavarian forest 
after 40% deforestation (Jung et al., 2021). Similar extent of NO3–N 
concentration increase after drastic deforestation was also reported in 
Hubbard Brook Experimental Forest (US) (Bormann et al., 1974) and 
Plešné national park (Kopáček et al., 2017). Our model suggests that the 
increase in NO3–N concentration is mainly due to reduced NO3–N 
uptake by tree vegetation and thereby lower N-storage in the catchment. 
In combination with lower transpiration, this leads to increased soil 
moisture and NO3–N increasing leaching from the soil after deforesta
tion. Compared to N, the increase in P after deforestation was less pro
nounced. The dominant change occurred in SRP and TP, whereas PP was 
only slightly affected. The projected increase of SRP in the Rappbode 
catchment under 80% deforestation (85.4%) is consistent with that in 
the Plešné national park, where SRP concentration in the streams 
increased by 50–100% after deforestation (Kopáček et al., 2017). Our 
model suggests that the lower P plant uptake in combination with 

slightly elevated soil moisture and related dissolution of P from soil 
increases soluble P availability. An increasing SRP availability due to 
higher water table and soil moisture can also be supported by associated 
changing redox conditions (Kopáček et al., 2017), which is not explicitly 
considered by our model. Intriguingly, suspended PP only slightly 
increased after deforestation because dense grassland vegetation shel
tered the soil surface and prevents soil loss due to upland erosion, which 
was explicitly modeled by HYPE. Continuous monitoring data from the 
Rappbode catchment outlet partially confirm the consistent changing 
trends with model projections (see SI text; Fig. S17). Existing monitoring 
is proceeded to trace the change in the years to come. 

4.2. Impact of deforestation on reservoirs 

We provide concrete evidence of noteworthy potential of reservoirs 
water quality deterioration by deforestation. The projected eutrophi
cation in the downstream reservoir (Rappbode) resulted in a higher 
production of algal biomass (Fig. 5), particularly at 80% deforestation 
scenario. Meanwhile, the influence of warming-induced lake physical 
changes (Huisman et al., 2018) acts as a secondary role in driving the 
phytoplankton development (Figs. S16 and S20). The magnitude of in
crease in cyanobacteria (21–36%) in response to deforestation is in line 
with a recent global projection until 2050 (20–30%), in which both 
climate and anthropogenically-driven land-use changes are found to be 
associated with algal biomass increase (Kakouei et al., 2021). Interest
ingly, cyanobacteria increased less than the other groups in relative 
terms (Fig. 5). Cyanobacteria can be generally regarded as more 
competitive under nutrient limitation (especially N limitation) than the 
other groups. Accordingly, although cyanobacteria increased the most 
in absolute terms due to higher nutrient levels, the degree of nutrient 
limitation decreased, and consequently so did the competitive advan
tage of cyanobacteria, allowing the diatoms and green algae to increase 
in biomass more in relative terms. This is evident in the strong corre
lation of nutrients with diatoms and green algae, but weaker correlation 
with cyanobacteria (Fig. S20). Nevertheless, the response of the algal 
composition to nutrient enrichment is difficult to generalize and likely 
occurs more at the species level (Kong et al., 2021; Shatwell et al., 2013) 
rather than in the broad taxonomic groups. Overall, together with the 
findings from catchment modeling showing a higher impact of defor
estation than climate change (Fig. 3), our results emphasize the need to 
focus more on catchment land use changes (particularly by climate 
change) in the near future for downstream lakes/reservoirs water 
quality. 

Intriguingly, variations in the phytoplankton projections are not as 
well explained by the climate and deforestation factors (40–63%) as 
those for the nutrient variables (70–82% excluding PP) (Fig. 5). Con
trolling factors beyond climate and deforestation, such as top-down ef
fect of grazing and competition between macrophytes and 
phytoplankton, may also play a crucial role in mediating the phyto
plankton development in future scenarios (Rousso et al., 2020). Hence, 
projections on phytoplankton can be accurately achieved when both 
external forcing and process-based models accounting for internal 
ecological descriptions in the lake/reservoir are available, which is 
exemplified in the present study. 

We deem that the findings in the current study can be relevant for 
many other similar catchment-reservoir systems in temperate regions. 
Catchment-reservoir systems are widely distributed particularly in nat
ural temperate forested areas (van Wijk et al., 2021). Due to an 
increasing frequency of droughts projected in the future (Hari et al., 
2020), we envision an increasing deforestation risk, which may exert 
profound impacts on forest ecosystems and corresponding surface wa
ters like rivers, lakes, and reservoirs by stimulating matter flux from the 
catchments. Our results, therefore, call for a more comprehensive 
evaluation of deforestation combining both catchment and 
ecosystem-level dynamics in the receiving stagnant waters. 
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4.3. Merits and limitations of the coupled modeling approach 

Our model coupling benefits vastly from the recent development of 
both catchment and aquatic ecosystem process-based models (Janssen 
et al., 2019; Rode et al., 2010). Moreover, our modeling approach 
distinguished from the existing studies because we coupled catchment 
and reservoir models at a process-based level and validated the model 
across a period with rapid changes. Such model coupling requires a 
detailed configuration, calibration/validation, and projection proced
ures and harmonized teamwork in both compartments. Despite 
emerging tools such as QWET (Nielsen et al., 2021), insights from both 
catchment and lake expertises are eternally essential. In addition, our 
model was calibrated and validated against field observations of 10 
years (2010–2019), covering a period with rapid change due to climate 
warming and deforestation (Figs. 2, S10 and S13). Therefore, our study 
showcases the capacity of process-based models in capturing ecosystems 
dynamics under changing external conditions, which enhances the 
reliability of the future projections. 

In addition, we developed the coupled model in two adjacent 
reservoir systems with distinct ecological states. We propose that it is 
valuable to conduct an ‘ensemble sites’ approach, that is, to develop one 
process-based model with identical parameters to multiple similar 
catchment-lake systems to prove transferability of the underlying model 
system. The parameter set of the catchment model is applicable for both 
natural and agricultural-dominant catchments, while the parameter set 
of the reservoir model represents both meso‑trophic and eutrophic states 
of reservoirs, covering a wide gradient of catchment-reservoir systems. 
For example, the two catchments largely differ in land use but both are 
well simulated for discharge using the same land use related parameters, 
which gives us strong confidence in the reliability of land use dependent 
evapotranspiration parameters. In addition, the model is able to reflect 
decisive ecosystem characteristics not only to the timing and magnitude 
of single variables but also to important key properties. The simulations 
showed a more eutrophic state for Hassel compared to Rappbode re
flected by nutrient concentrations and phytoplankton biomass and 
composition. The shift from diatoms towards cyanobacteria with 
increasing phosphorus supply is a key feature along the eutrophication 
gradient. Such comparative studies turn out to be insightful with respect 
to identifying fundamental principles, e.g., by using reference states 
(Carpenter et al., 2011) or by comparing gradients of environmental 
drivers on ecological processes (Jeppesen et al., 2020). In conclusion, we 
suggest incorporating such a comparative limnological perspective more 
in the future modeling practice to improve trust in the model validity for 
projection. 

Nevertheless, the current catchment modeling approach has limita
tions because the transient deforestation is missing and unlinked to 
climate change in the catchment modeling. The deforestation scenarios 
(50 and 80%) are currently modeled as a ‘sudden’ shift in the land use, 
whereas such a process is more progressive in reality. For example, 
NO3–N concentration was found to increase immediately after defor
estation or lagging one growing season, but generally peaks in 5–7 years 
after deforestation (Jung et al., 2021; Schmidt et al., 2021). Thus, we are 
modeling the ‘worst case’ scenario and cautions are needed when link
ing model projections to management practice. In addition, the defor
estation scenarios are not causally linked to climate change. Further 
studies are expected to incorporate more terrestrial dynamics in the 
catchment modeling to capture the delay in stream nutrient level 
changes. Moreover, reforestation will take place after the deforestation, 
which again is a transient process and specific reforestation manage
ment options will lead to deviating forest developments and associated 
nutrient export to fluvial and stagnant waters. For future modeling 
approach, we recommend the coupling of a forest growth model (Bug
mann et al., 2019) with the catchment nutrient export model. Lastly, 
deforestation may increase the sensitivity of discharge to extreme pre
cipitation events at sub-daily scale. Unfortunately, due to the limitation 
in the spatial context of precipitation data and the daily time step of the 

model, extreme events could only be partly captured by HYPE. Thus, a 
few extreme nutrient peaks are not well captured within the calibration 
and validation period (Fig. 2), which opens the opportunity for further 
improvement based on increasing data availability and finer model 
resolution. 

4.4. Implications for climate impact on reservoirs: a time-scale-dependent 
framework 

Our analyses underscore the need for revisiting our current focus in 
understanding the external drivers of lake/reservoir ecosystems in a 
time-scale dependent framework. Recent studies highlight the pro
nounced direct impact of climate changes (till 2100) in temperature and 
mixing regime (Woolway and Merchant, 2019), lake oxygen (Jane et al., 
2021) and thermal habitat (Kraemer et al., 2021). However, such 
changes require at least decades in the future to become detectable. Our 
study reveals that in a shorter time scale (i.e., 1-2 decades), changes in 
catchment land use such as deforestation will likely lead to eutrophi
cation in the reservoirs, while the direct impacts of climate change 
remained limited. This is the key interpretation of our work and thus 
lays a foundation for a field of research related to climate change impact 
studies: indirect impacts from climate change are likely to be much more 
profound than the direct impacts in the next 1-2 decades. This state also 
points to extreme events, which have the potential to change whole 
ecosystems within a reasonable short time. In addition to deforestation, 
other processes may turn out to be of similar importance, e.g., loss of key 
species or invasion of new ones (Bell et al., 2021), groundwater draw
downs and accompanying habitat loss of aquatic ecosystems (Rinke 
et al., 2021). 

Therefore, we advocate a timescale-dependent framework to tackle 
the climate change impact on the catchment-reservoir systems (Fig. 6), 
in which both short-term, indirect impacts and long-term direct impacts 
are summarized. Specifically, in the time scale of next 1-2 decades, in
direct effects of climate change on lake/reservoirs via catchment 
changes would be dominant, calling for a focus on catchment and 
improved nutrient management practice. On a longer time scale (up to 
2100), increasing direct impact from climate change are expected, 
particularly in the worst scenario (RCP8.5) (Woolway et al., 2020), in 
parallel with more severe changes in the catchments (e.g., deforesta
tion). At this stage, both catchment management and climate adaptation 
strategies in downstream reservoirs such as selective-withdrawal strat
egy (Mi et al., 2020) and optimum water transport (Zhan et al., 2021), 
will be highly recommended. 

5. Conclusions  

• The present study demonstrates that deforestation in temperate 
natural catchments results in an increased nutrient loading and can 
ultimately turn downstream mesotrophic reservoirs into a eutrophic 
state.  

• The enhanced nutrient loading (N and P) to the reservoirs after 
deforestation is attributed predominantly to the increasing nutrient 
concentration in the streams due to lower nutrient storage and up
take, higher nutrient concentration in soil water and raised soil 
nutrient leaching in the catchments, but marginally to the increasing 
discharge.  

• Our results highlight the predominant indirect effect of climate 
change on lakes/reservoirs via changing land use and catchment 
nutrient loading in the next 10–20 years. Direct effects of climate 
change on lakes/reservoirs remain limited compared to indirect 
catchment effects in this short-term scale but may become increas
ingly significant in the long run due to enhanced profound changes in 
thermal dynamics.  

• As a modeling approach, the present study exemplifies the joint 
strength of coupled catchment and lake/reservoir process-based 
model in elucidating the complex causality chain from climate 
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change to catchment-reservoir ecosystems. The unique dual system 
in this study site demonstrates the enormous value of comparative 
studies to improve the robustness of numerical model projections.  

• Finally, we propose to evaluate the climate change impact on lakes/ 
reservoirs under an updated framework with time-scale dependency, 
i.e., prioritizing the implementation of adaptation strategies in the 
upstream catchment in the near future, and in the reservoir in the 
long-term scales. 

Notes 

The field data supporting this paper are available from the Zenodo 
online repository: http://doi.org/10.5281/zenodo.6617108. 
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Boczoń, A., Kowalska, A., Ksepko, M., Sokołowski, K., 2018. Climate warming and 
drought in the Bialowieza Forest from 1950 to 2015 and their impact on the dieback 
of Norway Spruce stands. Water 10 (11), 1502 (Basel).  

Boessenkool, B. 2019. rdwd: select and download climate data from ’DWD’ (German 
weather service). R package version 1.2.0. https://CRAN.R-project.org/package=r 
dwd. 

Bolding, K. and Bruggeman, J. 2020 Parsac: parallel sensitivity analysis and calibration. 
Bormann, F.H., Likens, G., Siccama, T., Pierce, R., Eaton, J., 1974. The export of nutrients 

and recovery of stable conditions following deforestation at Hubbard Brook. Ecol. 
Monogr. 44 (3), 255–277. 

Bugmann, H., Seidl, R., Hartig, F., Bohn, F., Brůna, J., Cailleret, M., François, L., 
Heinke, J., Henrot, A.J., Hickler, T., 2019. Tree mortality submodels drive simulated 
long-term forest dynamics: assessing 15 models from the stand to global scale. 
Ecosphere 10 (2), e02616. 

Carlson, R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22 (2), 361–369. 
Carpenter, S.R., Cole, J.J., Pace, M.L., Batt, R., Brock, W.A., Cline, T., Coloso, J., 

Hodgson, J.R., Kitchell, J.F., Seekell, D.A., Smith, L., Weidel, B., 2011. Early 
warnings of regime shifts: a whole-ecosystem experiment. Science 332 (6033), 
1079–1082. 

Couture, R.M., Tominaga, K., Starrfelt, J., Moe, S.J., Kaste, Ø., Wright, R.F., 2014. 
Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment- 
lake system under changing land-use and climate. Environ. Sci.: Process. Impacts 16 
(7), 1588–1599. 

Déqué, M., Rowell, D., Lüthi, D., Giorgi, F., Christensen, J., Rockel, B., Jacob, D., 
Kjellström, E., De Castro, M., van den Hurk, B., 2007. An intercomparison of regional 
climate simulations for Europe: assessing uncertainties in model projections. Clim. 
Change 81 (1), 53–70. 

Domis, L.N.D., Elser, J.J., Gsell, A.S., Huszar, V.L.M., Ibelings, B.W., Jeppesen, E., 
Kosten, S., Mooij, W.M., Roland, F., Sommer, U., Van Donk, E., Winder, M., 
Lurling, M., 2013. Plankton dynamics under different climatic conditions in space 
and time. Freshwat. Biol. 58 (3), 463–482. 

Fig. 6. A conceptual framework to elucidate the climate impact on the 
catchment-reservoir systems in both short- and long-term time scales. In the 
short-term scale (1–2 decades), indirect effects of climate change (solid arrows) 
as mediated by catchment dynamics, e.g., deforestation, will be more influen
tial than the direct impacts of climate warming to the lakes/reservoirs, with 
vast potential of water quality deterioration and eutrophication. In the long- 
term scale (till 2100), however, direct impact of climate change (dashed ar
rows) on lake/reservoir water quality will be more pronounced, while the in
direct effects are also envisioned to be enhanced in parallel, ultimately resulting 
in the equally importance of both impact pathways. 

X. Kong et al.                                                                                                                                                                                                                                    

http://www.tereno.net
http://www.tereno.net
https://doi.org/10.1016/j.watres.2022.118721
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0001
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0001
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0001
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0002
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0002
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0002
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0003
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0003
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0003
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0003
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0004
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0004
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0004
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0004
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0006
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0006
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0006
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0006
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0007
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0007
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0007
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0008
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0008
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0008
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0009
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0009
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0009
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0010
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0010
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0010
https://CRAN.R-project.org/package=rdwd
https://CRAN.R-project.org/package=rdwd
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0013
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0013
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0013
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0014
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0014
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0014
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0014
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0015
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0016
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0016
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0016
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0016
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0017
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0017
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0017
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0017
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0018
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0018
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0018
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0018
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0019
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0019
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0019
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0019


Water Research 221 (2022) 118721

12

Downing, J., McClain, M., Twilley, R., Melack, J., Elser, J., Rabalais, N.N., Lewis, W., 
Turner, R.E., Corredor, J., Soto, D., 1999. The impact of accelerating land-use 
change on the N-cycle of tropical aquatic ecosystems: current conditions and 
projected changes. Biogeochemistry 46 (1), 109–148. 

Friese, K., Schultze, M., Boehrer, B., Buttner, O., Herzsprung, P., Koschorreck, M., 
Kuehn, B., Ronicke, H., Tittel, J., Wendt-Potthoff, K., Wollschlager, U., Dietze, M., 
Rinke, K., 2014. Ecological response of two hydro-morphological similar pre-dams to 
contrasting land-use in the Rappbode reservoir system (Germany). Int. Rev. 
Hydrobiol. 99 (5), 335–349. 

Ghaffar, S., Jomaa, S., Meon, G., Rode, M., 2021. Spatial validation of a semi-distributed 
hydrological nutrient transport model. J. Hydrol. 593, 125818. 

Hari, V., Rakovec, O., Markonis, Y., Hanel, M., Kumar, R., 2020. Increased future 
occurrences of the exceptional 2018–2019 Central European drought under global 
warming. Sci. Rep. 10 (1), 1–10. 

Harrison, J.A., Maranger, R.J., Alexander, R.B., Giblin, A.E., Jacinthe, P.A., Mayorga, E., 
Seitzinger, S.P., Sobota, D.J., Wollheim, W.M., 2009. The regional and global 
significance of nitrogen removal in lakes and reservoirs. Biogeochemistry 93 (1–2), 
143–157. 

Hoffman, G.E., Schadt, E.E., 2016. variancePartition: interpreting drivers of variation in 
complex gene expression studies. BMC Bioinform. 17 (1), 1–13. 

Hu, F., Bolding, K., Bruggeman, J., Jeppesen, E., Flindt, M., van Gerven, L., Janse, J., 
Janssen, A., Kuiper, J., Mooij, W., 2016. FABM-1 PCLake-linking aquatic ecology 
with hydrodynamics. Geosci. Model Dev. 9 (2), 2271–2278. 

Huisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M., Visser, P.M., 2018. 
Cyanobacterial blooms. Nat. Rev. Microbiol. 16 (8), 471–483. 

Jane, S.F., Hansen, G.J., Kraemer, B.M., Leavitt, P.R., Mincer, J.L., North, R.L., Pilla, R. 
M., Stetler, J.T., Williamson, C.E., Woolway, R.I., 2021. Widespread deoxygenation 
of temperate lakes. Nature 594 (7861), 66–70. 

Janse, J.H., 2005. Model Studies On the Eutrophication of Shallow Lakes and Ditches. 
Wageningen University, Wageningen, The Netherlands [Doctoral Dissertation].  

Janse, J.H., Scheffer, M., Lijklema, L., Van Liere, L., Sloot, J.S., Mooij, W.M., 2010. 
Estimating the critical phosphorus loading of shallow lakes with the ecosystem 
model PCLake: sensitivity, calibration and uncertainty. Ecol. Model. 221 (4), 
654–665. 

Janssen, A.B., Janse, J.H., Beusen, A.H., Chang, M., Harrison, J.A., Huttunen, I., Kong, X., 
Rost, J., Teurlincx, S., Troost, T.A., van Wijk, D., Mooij, W.M., 2019. How to model 
algal blooms in any lake on earth. Curr. Opin. Environ. Sustain. 36, 1–10. 

Jeppesen, E., Canfield, D.E., Bachmann, R.W., Søndergaard, M., Havens, K.E., 
Johansson, L.S., Lauridsen, T.L., Sh, T., Rutter, R.P., Warren, G., 2020. Toward 
predicting climate change effects on lakes: a comparison of 1656 shallow lakes from 
Florida and Denmark reveals substantial differences in nutrient dynamics, 
metabolism, trophic structure, and top-down control. Inland Waters 10 (2), 
197–211. 

Jung, H., Senf, C., Beudert, B., Krueger, T., 2021. Bayesian hierarchical modeling of 
nitrate concentration in a forest stream affected by large-scale forest dieback. Water 
Resour. Res. 57 (2), e2020WR027264. 

Kakouei, K., Kraemer, B.M., Anneville, O., Carvalho, L., Feuchtmayr, H., Graham, J.L., 
Higgins, S., Pomati, F., Rudstam, L.G., Stockwell, J.D., 2021. Phytoplankton and 
cyanobacteria abundances in mid-21st century lakes depend strongly on future land 
use and climate projections. Glob. Change Biol. 27 (24), 6409–6422. 

Kong, X., Seewald, M., Dadi, T., Friese, K., Mi, C., Boehrer, B., Schultze, M., Rinke, K., 
Shatwell, T., 2021. Unravelling winter diatom blooms in temperate lakes using high 
frequency data and ecological modeling. Water Res. 190, 116681. 
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Schmidt, S.I., Hejzlar, J., Kopáček, J., Paule-Mercado, M.C., Porcal, P., Vystavna, Y., 
2021. Relationships between a catchment-scale forest disturbance index, time 
delays, and chemical properties of surface water. Ecol. Indic. 125, 107558. 

Schnedler-Meyer, N.A., Andersen, T.K., Hu, F.R.S., Bolding, K., Nielsen, A., Trolle, D., 
2022. Water ecosystems tool (WET) 1.0 – a new generation of flexible aquatic 
ecosystem model. Geosci. Model Dev. 2022 (15), 3861–3878. 

Shatwell, T., Kohler, J., Nicklisch, A., 2013. Temperature and photoperiod interactions 
with silicon-limited growth and competition of two diatoms. J. Plankton Res. 35 (5), 
957–971. 

Storn, R., Price, K., 1997. Differential evolution–a simple and efficient heuristic for 
global optimization over continuous spaces. J. Glob. Optim. 11 (4), 341–359. 

Sweeney, B.W., Bott, T.L., Jackson, J.K., Kaplan, L.A., Newbold, J.D., Standley, L.J., 
Hession, W.C., Horwitz, R.J., 2004. Riparian deforestation, stream narrowing, and 
loss of stream ecosystem services. Proc. Natl. Acad. Sci. USA 101 (39), 14132–14137. 

Ullrich, A., Volk, M., 2010. Influence of different nitrate–N monitoring strategies on load 
estimation as a base for model calibration and evaluation. Environ. Monit. Assess. 
171 (1), 513–527. 

van Wijk, D., Teurlincx, S., Brederveld, R.J., de Klein, J.J., Janssen, A.B., Kramer, L., van 
Gerven, L.P., Kroeze, C., Mooij, W.M., 2021. Smart nutrient retention networks: a 
novel approach for nutrient conservation through water quality management. Inland 
Waters. https://doi.org/10.1080/20442041.20442020.21870852. 

Vrugt, J.A., Robinson, B.A., Hyman, J.M., 2008. Self-adaptive multimethod search for 
global optimization in real-parameter spaces. IEEE Trans. Evol. Comput. 13 (2), 
243–259. 

Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., Schewe, J., 2014. The 
inter-sectoral impact model intercomparison project (ISI–MIP): project framework. 
Proc. Natl. Acad. Sci. USA 111 (9), 3228–3232. 

Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G., Zawadzki, A., 2014. The 
hydrological legacy of deforestation on global wetlands. Science 346 (6211), 
844–847. 

Woolway, R.I., Kraemer, B.M., Lenters, J.D., Merchant, C.J., O’Reilly, C.M., Sharma, S, 
2020. Global lake responses to climate change. Nat. Rev. Earth Environ. 1 (8), 
388–403. 

Woolway, R.I., Merchant, C.J., 2019. Worldwide alteration of lake mixing regimes in 
response to climate change. Nat. Geosci. 12 (4), 271–276. 

Zemp, D., Schleussner, C.F., Barbosa, H., Rammig, A., 2017. Deforestation effects on 
Amazon forest resilience. Geophys. Res. Lett. 44 (12), 6182–6190. 

Zhan, Q., Kong, X., Rinke, K., 2021. High-frequency monitoring enables operational 
opportunities to reduce the dissolved organic carbon (DOC) load in Germany’s 
largest drinking water reservoir. Inland Waters. https://doi.org/10.1080/ 
20442041.20442021.21987796. 

X. Kong et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0020
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0020
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0020
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0020
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0021
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0021
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0021
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0021
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0021
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0022
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0022
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0023
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0023
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0023
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0024
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0024
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0024
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0024
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0025
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0025
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0026
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0026
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0026
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0027
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0027
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0028
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0028
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0028
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0029
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0029
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0030
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0030
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0030
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0030
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0031
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0031
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0031
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0032
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0032
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0032
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0032
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0032
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0032
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0033
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0033
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0033
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0034
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0034
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0034
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0034
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0035
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0035
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0035
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0036
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0036
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0036
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0037
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0037
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0037
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0038
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0038
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0038
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0039
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0039
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0040
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0040
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0040
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0041
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0041
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0042
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0042
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0042
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0043
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0043
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0043
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0044
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0044
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0044
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0045
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0045
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0045
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0045
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0046
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0046
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0046
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0046
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0047
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0047
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0048
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0048
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0048
http://www.R-project.org
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0050
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0050
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0050
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0050
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0051
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0051
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0051
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0052
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0052
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0052
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0053
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0053
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0053
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0053
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0054
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0054
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0054
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0055
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0055
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0055
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0056
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0056
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0056
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0057
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0057
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0057
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0058
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0058
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0059
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0059
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0059
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0060
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0060
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0060
https://doi.org/10.1080/20442041.20442020.21870852
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0062
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0062
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0062
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0063
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0063
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0063
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0064
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0064
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0064
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0065
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0065
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0065
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0066
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0066
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0067
http://refhub.elsevier.com/S0043-1354(22)00674-1/sbref0067
https://doi.org/10.1080/20442041.20442021.21987796
https://doi.org/10.1080/20442041.20442021.21987796

	Reservoir water quality deterioration due to deforestation emphasizes the indirect effects of global change
	1 Introduction
	2 Materials and methods
	2.1 Study sites
	2.2 Data collection for modeling
	2.3 Model description and set up
	2.3.1 Catchment model
	2.3.2 Reservoir ecosystem model

	2.4 Scenario design for future projections
	2.5 Statistical analysis

	3 Results
	3.1 Catchment model calibration and validation
	3.2 Projections of catchment dynamics
	3.3 Reservoir model calibration and validation
	3.4 Projections of reservoir ecosystem dynamics

	4 Discussion
	4.1 Impact of deforestation on catchment dynamics
	4.2 Impact of deforestation on reservoirs
	4.3 Merits and limitations of the coupled modeling approach
	4.4 Implications for climate impact on reservoirs: a time-scale-dependent framework

	5 Conclusions
	Notes
	Declaration of Competing Interest
	Acknowledgments
	Supplementary materials
	References


